Spanning and Sampling in Lebesgue and Sobolev Spaces

نویسنده

  • H.-Q. BUI
چکیده

We establish conditions on ψ under which the small-scale affine system {ψ(ajx− k) : j ≥ J, k ∈ Zd} spans the Lebesgue space L(R) and the Sobolev space W(R), for 1 ≤ p < ∞ and J ∈ Z. The dilation matrices aj are expanding (meaning limj→∞ ‖a−1 j ‖ = 0) but they need not be diagonal. For spanning L our result assumes ∫ Rd ψ dx 6= 0 and, when p > 1, that the periodization of |ψ| or of 1{ψ 6=0} is bounded. But the periodization of ψ need not be constant; in other words, the functions {ψ(x − k) : k ∈ Zd} need not form a partition of unity like B-splines do. For spanning W we impose the Strang–Fix condition on ψ, but only to order m− 1 whereas earlier authors required order m. These spanning results follow from explicitly approximating an arbitrary function f by linear combinations of the ψ(ajx− k), with the coefficients being local averages of f .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

Maximal inequalities for dual Sobolev spaces W − 1 , p and applications to interpolation

We firstly describe a maximal inequality for dual Sobolev spaces W−1,p. This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood maximal operator in Lebesgue spaces. Even in the euclidean space, this one seems to be new and we develop arguments in the general framework of Riemannian manifold. Then we present an application to obtain interpolation results for Sobol...

متن کامل

Multilinear Fourier Multipliers with Minimal Sobolev Regularity

Letm be a positive integer. In this talk, we will introduce optimal conditions,expressed in terms of Sobolev spaces, on m-linear Fourier multiplier operatorsto be bounded from a product of Lebesgue or Hardy spaces to Lebesgue spaces.Our results are sharp and cover the bilinear case (m = 2) obtained by Miyachiand Tomita [1]. References[1] Miyachi A., and Tomita N., Minima...

متن کامل

On isomorphism of two bases in Morrey-Lebesgue type spaces

Double system of exponents with complex-valued coefficients is considered. Under some conditions on the coefficients, we prove that if this system forms a basis for the Morrey-Lebesgue type space on $left[-pi , pi right]$, then it is isomorphic to the classical system of exponents in this space.

متن کامل

The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation

‎By considering a degenerate $p(x)-$Laplacian equation‎, ‎a generalized compact embedding in weighted variable‎ ‎exponent Sobolev space is presented‎. ‎Multiplicity of positive solutions are discussed by applying fibering map approach for the‎ ‎corresponding Nehari manifold‎. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005